Memetic feature selection algorithm for multi-label classification

نویسندگان

  • Jae-Sung Lee
  • Dae-Won Kim
چکیده

The use of multi-label classification, i.e., assigning unseen patterns to multiple categories, has emerged in modern applications. A genetic-algorithm based multi-label feature selection method has been considered useful because it successfully improves the accuracy of multi-label classification. However, genetic algorithms are limited to identify fine-tuned feature subsets that are close to the global optimum, which results in a long runtime. In this paper, we present a memetic feature selection algorithm for multi-label classification that prevents premature convergence and improves the efficiency. The proposed method employs memetic procedures to refine the feature subsets found through a genetic search, resulting in an improvement in multi-label classification. Empirical studies using various tests show that the proposed method outperforms conventional multi-label feature selection methods. 2014 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

A New Genetic Algorithm for Multi-Label Correlation-Based Feature Selection

This paper proposes a new Genetic Algorithm for Multi-Label Correlation-Based Feature Selection (GA-ML-CFS). This GA performs a global search in the space of candidate feature subsets, in order to select a high-quality feature subset that is used by a multi-label classification algorithm – in this work, the Multi-Label k-NN algorithm. We compare the results of GA-ML-CFS with the results of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 293  شماره 

صفحات  -

تاریخ انتشار 2015